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We investigate the neutral-to-ionic insulator-insulator transition in one-dimensional materials by treating a
strong-coupling effective model based on the ionic Hubbard model using the density-matrix renormalization
group and finite-size scaling. The effective model, formulated in a spin-one representation, contains a single
parameter. We carry out an extensive finite-size scaling analysis of the relevant gaps and susceptibilities to
characterize the two zero-temperature transitions. We find that the transition from the ionic band-insulating
phase to an intermediate spontaneously dimerized phase is Ising, and the transition from the dimerized phase
to the Mott-insulating phase is Kosterlitz-Thouless, in agreement with the field-theory-based predictions.
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I. INTRODUCTION

Electrons in solids are subject to both a single-particle
potential and the Coulomb interaction. A wealth of interest-
ing phenomena can occur when the form of the single-
particle potential deviates from that of the ideal crystal due
to, for example, structural transitions, lattice vibrations, or
defects or impurities. A simple Hamiltonian that incorporates
the combined effects of interactions and reduced transla-
tional symmetry in a particularly transparent manner is the
ionic Hubbard model �IHM�, in which the single-particle en-
ergy alternates between neighboring sites. This model was
introduced by Nagaosa and Takimoto1–3 to describe the
neutral-ionic transition observed by Torrance et al.4 in
mixed-stack organic charge-transfer compounds. In a mixed
stack of donor �D� and acceptor �A� molecules, the neutral
phase corresponds to a uniform and neutral distribution of
charge, D0A0D0A0, and the ionic phase to an alternation of
positive and negative charges, D+A−D+A−. The insulating be-
havior in the neutral phase originates from the Coulomb in-
teraction between electrons, i.e., the Mott mechanism,
whereas the ionic phase is essentially a band insulator. Re-
cently, the neutral-ionic transition has been observed in or-
ganic charge-transfer compounds close to zero temperature,
motivating interest in it as a pure quantum phase transition.5

A different class of quasi-one-dimensional materials in
which a similar charge disproportionation occurs is that of
the halogen-bridged transition-metal complexes, whose
structure is formed by a backbone of alternating metal and
halogen atoms.6 In these MX-chain compounds �or in the
related MMX materials7�, a spontaneous breaking of the
translational symmetry occurs due to the dimerization of the
halogen sublattice, XMX-M-XMX-M. The differing dis-
tances of the halogen ions from the neighboring metal ions
give rise to a twofold alternation in the energy of the d
levels.

The Hamiltonian of the ionic Hubbard model can be
grouped into three terms, a one-dimensional nearest-
neighbor hopping term with matrix element t, an on-site
Coulomb repulsion of strength U, and an ionic alternating
potential of depth �;

Ĥ = Ĥt + ĤU + Ĥ�, �1�

with

Ĥt = t �
i=1,�

L−1

�ĉi�
† ĉi+1� + ĉi+i�

† ĉi�� , �2�

ĤU =
U

2 �
i=1,�

L

n̂i�n̂i−�, �3�

and

Ĥ� =
�

2 �
i=1,�

L

�− 1�in̂i�. �4�

Here ĉi�
† �ĉi�� are the usual creation �annihilation� operators

on site i for an electron of spin � and n̂i�= ĉi�
† ĉi�. Without

the ionic potential, �=0, the model reduces to the one-
dimensional Hubbard model, whose behavior is well
understood.8 Although the overall physics described by the
ionic Hubbard model is now fairly well known, many details
of the transition are still unclear. The general behavior in the
ground state is summarized in the schematic ground-state
phase diagram shown in Fig. 1. When ��U, the system is a
band insulator �BI� and has both a charge and spin gap.
When ��U, the system is a critically antiferromagnetic
Mott insulator �MI� with a charge gap and gapless spin ex-
citations. These two phases are separated by two continuous
phase-transition lines within which there is a spontaneously
dimerized insulating �SDI� phase of width of order t, i.e., a
phase with both spin and charge gaps as well as with long-
range bond dimer order.

In order to understand the origin of the phases, let us first
examine what happens in the atomic limit, t=0, which can be
easily treated. For U�� and at half filling, there is no
double occupancy in the ground state, which consists of a
series of singly occupied sites with energy �� /2 so that the
entire system has energy E=0. For U��, double occupancy
is favorable, and the ground state consists of doubly occu-
pied sites at energy U−� alternating with empty sites so that
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the energy of the system is L�U−�� /2. At �U−��→0, a
level crossing of two configurations occurs and there is a
first-order transition at U=�.

Turning on the hopping term leads to more subtle behav-
ior in the vicinity of the transition. In the noninteracting
limit, U=0, the Hamiltonian is diagonal in momentum space.
It follows that the ionic term, �, opens a charge and a spin
gap, and the two gaps have the same value. Correspondingly,
spin-spin and charge-charge correlations decay exponen-
tially. The scenario does not change with the inclusion of a

weak interaction ĤU; the electrons tend to doubly occupy
sites with lower potential, and the system remains a band
insulator.

In the large-U limit, the double occupancy can be treated
perturbatively and the low-energy physics of the IHM is de-
scribed by an effective spin one-half Heisenberg model.1,11,12

It is important to note that this effective model restores trans-
lational invariance and that the charge and spin sectors are
completely separated. The system has gapless spin excita-
tions and critical spin-spin correlations, while the charge gap,
in contrast, scales as U for large U. This description is robust
for a wide range of parameters in the strong-coupling limit
but fails close to the transition line because perturbation
theory breaks down in the critical regime.1 In fact, there are
analytical and numerical indications that show that higher-
order spin excitations mix into the charge degrees of freedom
everywhere in the MI phase.9,10,13

A few years ago, Fabrizio et al.14 proposed an interesting
scenario based on field-theoretical arguments. They argued
that two quantum phase transitions occur, an Ising transition
between the band insulator and an intermediate spontane-
ously dimerized phase, followed by �for increasing U /�� a
Kosterlitz-Thouless �KT� transition between the dimerized
phase and the Mott insulator. This scenario is based on an
argument in which the transition is approached, on the one
hand, from the MI limit and, on the other hand, from the BI
limit. The authors consider the weak-coupling case, �U ,��
	 t, and use standard bosonization. The Hamiltonian then

consists of three parts, a first term depending only on charge
degrees of freedom, a second term involving only spin de-
grees of freedom and a third term, proportional to �, which
couples charge and spin degrees of freedom. Starting from
the MI phase �U dominating� with a charge gap but no spin
gap, one can integrate out the charge degrees of freedom.
This leads to a sine-Gordon model for the spin degrees of
freedom with a positive coupling for U�Uc2

. The coupling
term turns negative for U�Uc2

and therefore Uc2
corre-

sponds to a KT transition point. A spin gap opens for U
�Uc2

and is attributed to a SDI phase. Starting from the BI
phase �� dominating�, which exhibits both a charge and a
spin gap, Fabrizio et al.14 calculate spin and bond-order sus-
ceptibilities using perturbation theory. A critical value Uc1

is
found where the bond-order susceptibility diverges, while the
spin susceptibility remains finite. Thus, Uc1

must be in a
region with a finite spin gap, and it follows that Uc1

�Uc2
.

Close to Uc1
it is argued that the spin degrees of freedom can

be considered to be frozen. This yields a double sine-Gordon
Hamiltonian for the charge degrees of freedom, which is
known to undergo a quantum phase transition of an Ising
type.15 The order parameter of this transition is the bond-
order operator, which confirms that the intermediate region,
Uc1

�U�Uc2
, is in a SDI phase.16

At least one transition has been found in all numerical
work9–11,17–22 published after Ref. 14, although, for the most
part, the critical behavior was not characterized. The critical
exponents were calculated in Ref. 10 but were found to de-
viate from the expected two-dimensional �2D�-Ising values.
However, even confirming that there is a second transition
has been a quite difficult task. The two transitions turn out to
be very close to one another and, since the transition to the
Mott insulator is expected to be a KT transition, it is very
difficult to find and characterize using finite-size-scaling
studies.10 For these reasons, studying an effective model
characterizing the region of the transition and the intermedi-
ate phase is useful.

Another very important subtlety is how to map the gaps
from the field-theoretical model onto the original lattice
model. In the ionic Hubbard model, the charge gap, the one-
particle gap, and the spin gap all behave differently at the
transitions. The one-particle gap is related to the charge and
spin gaps but is fundamentally different because it involves a
change in the particle number, while the charge and spin
gaps are spectral gaps of excitations into the charge and spin
sectors, respectively, only. One way of locating critical
points is to examine the smallest energy gap, i.e., the mass
gap, as a function of the tuning parameters. The critical point
is then the point at which the gap vanishes in the thermody-
namic limit.

The remainder of this paper is organized as follows. In
Sec. I, an effective spin-one model for the transition is de-
rived via a strong-coupling treatment. In Sec. II, the numeri-
cal method used to study the model is described. In Sec. III
and IV we report the analysis of the band-insulator-to-
spontaneously-dimerized insulator and the spontaneously-
dimerized-to-Mott-insulator transitions, respectively.

FIG. 1. �Color online� Ground-state phase diagram of the ionic
Hubbard model. Location of the phase boundaries is approximate
but drawn to scale according to values from Refs. 9 and 10. The
shaded �red online� intermediate region designates a SDI phase.
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II. EFFECTIVE MODEL

A. Derivation of the effective Hamiltonian

In order to investigate the critical behavior of the ionic
Hubbard model at half filling, we derive an effective model,
formulated in terms of spin-one operators, valid for �U ,��

 t. In this limit, the doubly occupied state on the even sites
�with on-site potential � /2� and the unoccupied state on the
odd sites can be projected out. At half filling, a double occu-
pancy on an even site is necessarily associated with a com-
pletely unoccupied odd site and has a cost in energy of U
+�. This procedure is a second-order strong-coupling expan-
sion with parameter t / �U ,�� analogous to that used to derive
the t-J model from the Hubbard model. In fact, the resulting
model can equivalently be formulated in terms of t-J opera-
tors rather than spin-one operators; we feel that the latter
formulation is more intuitive for the half-filled system.23–26

The physical meaning of the spin-one states is as follows: the
Sz= �1 state corresponds to a singly occupied site with a
spin-1

2 electron with spin up or down, while the Sz=0 state
corresponds to an unoccupied site on the even sites and a
doubly occupied site on the odd sites. The mapping of the
states of the ionic Hubbard model to those of the effective
spin-one model is summarized in Table I.

As we shall see, conservation of particle number leads to
a spin-exchange process for the spin-one operators that is
more restricted than the Heisenberg exchange. Given the
mapping of states described above, the effective Hamiltonian
can most easily be derived by first expressing the original
Hamiltonian in terms of transition operators between the fer-
mionic states �Hubbard operators�, then projecting out the
states as outlined above, and subsequently writing the Hamil-
tonian in the reduced state space in terms of spin transition
operators. Finally, the transition operators in spin space can
be rewritten in terms of spin-one operators.27,28 A detailed
derivation is given in the Appendix.

The Hamiltonian for the effective spin-one model can
thus be expressed in terms of the usual spin-one operators,

yielding Ĥe= Ĥt
e+ Ĥ�

e, with the exchange term

Ĥt
e =

t

2�
i=1

L

��Ŝi
+Ŝi+1

− + Ŝi
−Ŝi+1

+ �Ŝi+1
z − Ŝi

z�Ŝi
+Ŝi+1

− + Ŝi
−Ŝi+1

+ ��

�5�

and the interaction term governed by the single parameter
�=U−�,

Ĥ�
e = −

�

2�
i=1

L

��Ŝi
z�2 − 1� . �6�

Note that it is immediately clear from the effective model
that the relevant interaction parameter is �=U−�. For t=0,
it is clear that there should be a transition at U�� because

the sign of the Ĥ�
e term changes. For �
 t, the on-site Sz=0

state is strongly suppressed so that the remaining degrees of
freedom, Sz=1 and Sz=−1, correspond to the localized
spin-1

2 degrees of freedom of the MI phase of the original
model. For �→−�, the Sz= �1 local states are suppressed,
leading to a ground state that is a simple product of local
Sz=0 states, which maps to the band insulator. However, the
nature of the transition�s� and possible intermediate phases
for finite t still needs to be determined. In particular, it is
important to investigate whether the behavior in the vicinity
of �=0 agrees with previous numerical results for the ionic
Hubbard model,10,11,22 as well as with field-theoretical
treatments.14

Note that the derivation of the effective model can easily
be extended to include additional interaction terms that do
not break the symmetries of the original model, such as a
next-nearest-neighbor Coulomb repulsion. In a similar con-
text, a closely related effective model was developed some
time ago in Ref. 23 and more recently in Ref. 25, which also
derives higher-order terms in the strong-coupling expansion.

B. Observables

Since the formulation of the effective model in terms of
spin-one operators is a notational convenience rather than
physical, we are interested in studying observables of the
original model. Therefore, it is necessary to translate the ob-
servables of the IHM into the language of the spin-one
model. The local spin operators map as �small letters: IHM,
capital letters: effective model�

ŝi
z →

1

2
Ŝi

z,

ŝi
� →

1

2
�Ŝi

��2,

ŝi
2 →

3

4
�Ŝi

z�2,

the local charge operators as

n̂i →��Ŝi
z�2 i = even

2 − �Ŝi
z�2 i = odd,

�
and total spin and charge operators as

ŝz →
1

2
Ŝz,

ŝ2 →
1

2
Ŝz	1

2
Ŝz + 1
 +

1

4 �
i,j=1

L

�Ŝi
−�2�Ŝj

+�2,

TABLE I. Mapping between the single-site basis states of the
ionic Hubbard model ��0 , �↑  , �↓  , �d�, with �d denoting the dou-
bly occupied state, and those of the effective spin-one model
��Sz�.

−� /2 +� /2

�0 → excluded �0 → �0
�↑  → �1 �↑  → �1
�↓  → �−1 �↓  → �−1
�d → �0 �d → excluded
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N̂ → L + �
i=1

L

�− 1�i�Ŝi
z�2. �7�

As we can see, conservation of sz in the IHM leads to
conservation of Sz in the effective model, with the spin
scaled by a factor of 1/2. However, conservation of the total
spin in the IHM does not lead to conservation of total spin
for the effective model, which is not SU�2�-invariant. In
Table II we show the mapping of the most important quan-
tities from the original ionic Hubbard model to the effective
spin-one model.

C. Symmetries

One relevant characteristic of the effective model is the
extent to which the symmetries of the original model are

preserved or modified. The interaction term Ĥ�
e is local,

translationally invariant, and depends only on �Sz�2, in con-
trast to the on-site part of the IHM Hamiltonian in Eq. �1�.
The apparently greater translational symmetry of the effec-
tive model is a consequence of the reduction in state space in
transforming to the effective model. Note that this is only

true at half filling: the quantity �N̂−L �see Eq. �7�� is con-
served and breaks translational symmetry except at half fill-
ing, where it is zero. �Note that the interpretation of the Sz

=0 state is not translationally invariant.� Since the spin-
exchange term has the same symmetries as the hopping term
in the IHM, the remaining symmetries of the original model
are preserved in the effective model. Conserved quantities in
the original model, such as the total z component of the spin,
sz, the total spin, s, and the number of particles, N, are still
conserved in the effective model but have different
meanings.

III. NUMERICAL METHOD

We have investigated the effective model by performing
density-matrix renormalization-group �DMRG� calculations

for different system sizes, from L=200 up to 600 sites, with
open boundary conditions �OBCs� and an even number of
sites.29,30 For small chains, boundary effects can be large,
depending on the correlation length. Thus, in order to mini-
mize any dispersion due to the edges,31 Friedel oscillations,32

and odd-even effects,33 we analyze systems of at least 200
sites. In order to achieve sufficient accuracy, at least five
sweeps must be performed, with up to 1280 states retained in
the last sweep. The maximum system size that can be accu-
rately treated is then approximately 600 sites.34 The maxi-
mum discarded weight of the density matrix for the effective
model is always less than 10−8 and is typically zero to within
the numerical precision far from the critical points.35 In order
to calculate ground-state properties, we target the ground
state in the Sz=0 sector; we target both the ground state and
the first excited state in the Sz=0 sector to calculate the “ex-
citon” gap of the original IHM; and the lowest states in the
Sz=1 and Sz=2 sectors are needed to calculate the charge and
spin gaps, respectively, of the IHM.10

We have repeated the same calculations using the dy-
namic block-state selection �DBSS� approach, fixing the
threshold of maximum quantum information loss to 
=10−6 at each step.35,36 For instance, m�500 basis states are
enough to correctly describe the ground-state wave function
of a system with 500 sites for �=1.23. However, as we in-
crease � the number of states required increases, for ex-
ample, to m�900 states for �=2. For ground states of other
symmetry sectors, e.g., the lowest triplet excitation, this
number can sometimes be larger when the excited state is
delocalized despite the fact that its Fock subspace is smaller.
Nevertheless, since we are interested in only the energy of
these states and since measurements are carried out only on
the absolute ground state, keeping of the order of a thousand
states is usually sufficient.

As the aim of the effective model is to describe the
strong-coupling limit of the IHM when �U ,��
 t, we have
compared results from the effective model to DMRG results
for the IHM for U��=20t.10 All the quantities that we mea-
sure: gaps, ionicity, bond-order parameter, and polarization
are in agreement to within a few percent.

TABLE II. Mapping of relevant physical quantities to the effective spin-one model.

Quantity Ionic Hubbard model Effective spin-one model

Ionicity I =
2

L�
i=1

L

�− 1�i�n̂i I = 2 −
2

L�
i=1

L

��Ŝi
z�2

Polarization Pe =
1

L�
i=1

L

xi�n̂i Pe =
1

L�
i=1

L

�− 1�ixi��Ŝi
z�2 −

1

2

Bond-order parameter
D =

1

L − 1�i=1

L−1

�− 1�i�ĉi
†ĉi+1 + ĉi+1

† ĉi D =
1

L − 1�i=1

L

�− 1�i���Ŝi
+Ŝi+1

− + Ŝi
−Ŝi+1

+ �Ŝi+1
z

− Ŝi
z�Ŝi

+Ŝi+1
− + Ŝi

−Ŝi+1
+ ��

AFM order A =
1

L�
i

L

�− 1�i�ŝi
z A =

1

2L�
i

L

�− 1�i�Ŝi
z
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IV. BI TO SDI TRANSITION

In this section we study the first transition between the
band-insulator phase and the spontaneously dimerized phase.
We have tuned the interaction coupling � starting from zero,
where the system behaves like a band insulator, increasing it
until the first transition point �c1

is reached. In order to locate
the transition point, we have studied the behavior of the sin-
glet and triplet gaps and of the bond-order parameter. The
two gaps go to zero in the thermodynamic limit at the tran-
sition point and subsequently reopen. The value of the bond-
order parameter, which measures the system’s dimerization,
changes from zero to a finite value across the transition. The
existence of such a transition has been extensively discussed
for the IHM.10,22 Therefore, we have focused on the charac-
terization of the transition by evaluating its critical exponents
explicitly.

The Hamiltonian of the effective model is not evidently
related to any known classical model. Therefore, we must
first determine the value of the dynamic critical exponent z in
order to carry out finite-size scaling. Subsequently, we ex-
tract the correlation-length exponent � from the divergence
of the mass gap. Finally, the thermodynamic exponents �, �,
and �, which are all related to the free-energy density, are
obtained by analyzing the divergence of the bond-order pa-
rameter, the specific heat, and the bond-order susceptibility,
respectively.

A. Dynamic critical exponent z

For a quantum system related to a classical model by the
transfer matrix, the dynamic critical exponent plays the role
of an extra dimension, i.e., z=1. In general, space and time
correlations can be coupled, and the value of z can be differ-
ent from one. Therefore, a determination of z is required to
obtain and interpret all the remaining critical exponents.
First, we identify the mass gap

F��,L� = E1��,L� − E0��,L� , �8�

which is the gap that scales to zero most quickly close to the
critical point.37 This gap is proportional to �−z, where the

correlation length � is limited by the system size L. Conse-
quently, the ratio,

Rz��,N,M� =
F��,N�
F��,M�

N

M
, �9�

of the mass gaps for different system sizes behaves as
Rz��c1

,N ,M���N /M�1−z for N ,M 
1 and thus depends only
on the ratio of system sizes r�N /M.38 In Fig. 2�a�, we show
that all the gap ratios with a particular r �r=1.5 in the figure�
cross each other at the same point, which is near Rz=1. The
behavior is similar for other values of r; we have examined
r=1.2, 1.25, 1.33, and 2. In Fig. 2�b�, one can see that curves
with different r, scaled by the M =200 gap, cross Rz=1 at the
same point. Thus, it is clear that all curves cross each other at
approximately the same value of �, ��1.3, where
Rz�N ,M��1, consistent with z=1.39 In order to carry out the
scaling analysis of the critical coupling and other critical
exponents, we take z=1 in Secs. IV B and IV C.

B. Correlation-length exponent �

In order to proceed, we next need to calculate the critical
value of the coupling in the thermodynamic limit, �c1

. As is
known from finite-size scaling studies of various classical
and quantum systems, a particularly efficient and accurate
way of doing this is to carry out scaling using the logarith-
mic mass-gap ratio40 defined as

R��,L� =
ln F��,L + 2� − ln F��,L�

ln�L + 2� − ln L
. �10�

This quantity can be used to define a sequence of pseud-
ocritical points for different system sizes using the criterion
R��� ,L�+1=0. In Fig. 3�a� we show the behavior of
R��� ,L�+1 as a function of � for various system sizes. The
curves of the scaled ratio cross the line at two points, defin-

(a) (b)

FIG. 2. �Color online� Mass-gap ratio Rz as function of the
coupling � for �a� various system sizes N and M and the same ratio
r=1.5, and �b� mass-gap ratio for different r scaled by the M
=200 gap.

(a) (b)

FIG. 3. �Color online� �a� Logarithmic mass-gap ratio as a func-
tion of � for various system sizes and �b� finite-size extrapolations
of the critical point using both sequences of pseudocritical points,
as well as the two definitions of the gap minimum. Here �m is the
position of the mass-gap minimum, �r the position of the mass-gap
ratio minimum, and �a

� and �b
� are the upper and lower sequences of

pseudocritical points, respectively. The lines are guides to the eyes.
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ing two sets of pseudocritical points, which we designate as
�a

��L� and �b
��L� for the lower and upper crossings, respec-

tively. The finite-size scaling of both series of pseudocritical
points is depicted in Fig. 3�b�. All curves are fit with third-
order polynomials in 1 /L. In the thermodynamic limit, �a

�

and �b
� converge to the same point to within the accuracy of

the extrapolation, confirming that the transition is second or-
der. The finite-size scaling of the position of the minimum in
the mass gap provides an alternate way of determining �c1

.
This can either be done using the mass gap �Eq. �8�� directly,
which we designate as �m�L�, or using the minimum of the
mass-gap ratio, Eq. �9�, designated as �r�L�. The extrapola-
tions of positions of the minima, �m and �r, also converge to
the same point, providing a confirmation of the consistency
and stability of the extrapolation procedure.

We obtain the location of the critical point at

�c1
= 1.286�5� . �11�

We can now estimate the correlation-length exponent us-
ing the finite-size version of the Callan-Symanzik
�-function38,40–42

�cs
−1��,L� =

1

F��,L�
�F��,L�

��
, �12�

which characterizes the flow of the mass gap with coupling
constant on a finite system. It has critical behavior

�cs��c1
,L� � L−1/�. �13�

To calculate the exponent �, we proceed as follows: given a
sequence of pseudocritical points, ���L�, we extrapolate the
ratio of the � functions for different system sizes,

�cs���,L + ��
�cs���,L�

� 	L + �

L

−1/�

,

to the thermodynamic limit. Here it is important to choose
���L� carefully: extrapolating using a series of pseudocritical
points that is close to the gap minimum can yield unreliable

results because the derivative of the mass gap remains zero
or close to zero. Therefore, we utilize the ratio from the
second series of pseudocritical points �L

� =�b
��L� rather than

from the first �a
��L� �see Fig. 3�b��. If �1 /���1 and L
�,

then

L

�
��cs���,L + ��

�cs���,L�
− 1� � −

1

�
.

From the numerical extrapolation, we obtain

1

�
= 0.996�5� . �14�

A plot of unscaled mass-gap data and its collapse using this
scaling exponent is shown in Fig. 4.

C. Thermodynamic exponents �, �, and �

The bond-order parameter characterizes the bond-order-
wave �BOW� phase. Fabrizio et al.14,16 argued that the bond-
order parameter is the right quantity to characterize the Ising
transition in the IHM. The order parameter, expressed in the
spin-one language, is given by

D��,L� =
1

L − 1�
i=1

L

�− 1�i���Ŝi
+Ŝi+1

− + Ŝi
−Ŝi+1

+ �Ŝi+1
z 

− �Ŝi
z�Ŝi

+Ŝi+1
− + Ŝi

−Ŝi+1
+ �� . �15�

DMRG results for the bond-order parameter as a function of
the coupling � near the first transition point are depicted for
various system sizes in Fig. 5�a�.

We can use the bond-order parameter to determine the
associated critical exponent �, i.e.,

D�� � �c1
,L� � L−�/�. �16�

Using the logarithmic derivative,

(a) (b)

FIG. 4. �Color online� Scaling of the mass gap around the first
critical point: �a� unscaled data. The lines are guides to the eyes. �b�
Rescaled data F�� ,L�L are plotted as a function of the rescaled
coupling L��−�c1

� /�c1
.

(a) (b)

FIG. 5. �Color online� Bond-order parameter as a function of the
coupling � around the transition point: �a� data for different system
sizes near the first transition and �b� data rescaled as D�� ,L�L1/8

plotted as a function of the rescaled coupling L��−�c1
� /�c1

.

TINCANI, NOACK, AND BAERISWYL PHYSICAL REVIEW B 79, 165109 �2009�

165109-6



ln D���,L + �� − ln D���,L�
ln�L + �� − ln L

� −
�

�
, �17�

we obtain

�

�
= 0.124�5� . �18�

The excellent data collapse of the rescaled data, as can be
seen in Fig. 5�b�, confirms that the transition point belongs to
the 2D-Ising universality class. Results for the finite-size
scaling of the exponent � are plotted in Fig. 6.

Since, in a quantum phase transition, the coupling plays
the same role as temperature in a thermal phase transition,
we can define a corresponding “specific heat,”37,43

cv��,L� = −
�

L

�2E0��,L�
��2 .

Note that this quantity does not correspond to the real spe-
cific heat. Nevertheless, due to the scaling relations and its
interplay with the other quantities, it has to diverge with the
exponent �. The physical specific-heat exponent is related to
our � by the Grüneisen parameter.44

The specific heat usually contains a regular term that is
typically larger in amplitude than the singular one. There-
fore, instead of using the logarithmic derivative to estimate
the exponent � /�, we instead use the ratio

L

2

cv��,L + 2� − cv��,L�
cv��,L�

�
�

�
. �19�

To overcome possible problems in determining this expo-
nent, we use the Hellman-Feynman45 theorem to exploit the
accuracy of the DMRG in calculating local quantities;

�E0��,L�
��

= −
1

2�
i

L

��Ŝi
z�2 . �20�

This trick reduces the computational cost to that of calculat-
ing the first derivative of the cubic spline, which interpolates
the data points.46 The result is the following:

�

�
= 0.00�1� . �21�

The finite-size behavior of the various exponents is plotted in
Fig. 6. The scaling relation �=2�1−�� is fulfilled by Eqs.
�14� and �21�.38

Finally, we determine the exponent � associated with the
relevant susceptibility. The susceptibility corresponding to
the bond-order parameter is

D��,L� = −
1

L
� �D��,L�

�hD
�

hD=0
. �22�

In order to calculate this quantity, we turn once more to the
Hellman-Feynman theorem and to linear-response theory.
We perturb the Hamiltonian with a small field hD conjugate
to the order parameter D. The field has to be small enough to
reveal a linear regime in the changes but not smaller than the
actual DMRG resolution; we use 2�hD=10−4t. We have mea-
sured the order parameter for four points around hD=0 in
order to compute its first derivative at hD=0.

Once we have evaluated the static susceptibility for dif-
ferent system sizes as shown in Fig. 7�a�, we proceed in the
same way as for the previous exponents �see Fig. 7�b��. The
scaling relation is

D��c1
,L� � L�/�. �23�

Thus, from

ln D���,L + �� − ln D���,L�
ln�L + �� − ln L

�
�

�
, �24�

we obtain the last thermodynamic exponent, as plotted in
Fig. 6, with the value

�

�
= 1.72�5� . �25�

As shown in the figure, the last points for the largest system
sizes have been excluded in calculating the exponent. The
reason is that the calculation of the susceptibility becomes

FIG. 6. �Color online� Finite-size behavior of the exponents �,
�, �, and �. The fit is to a third-degree polynomial in 1 /L. Note that
the points for the two smallest 1 /L are not included in fitting �.

(a) (b)

FIG. 7. �Color online� �a� Bond-order susceptibility as function
of the coupling � for different system sizes. �b� The collapsed
curves scaled using the exponent �=7 /4.
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uncontrolled for very big system sizes. In order to compen-
sate the occurrence of nonlinear behavior in the response for
larger system sizes, we would have to use a very small per-
turbation field. However, the effect of such a small field can
be difficult to distinguish from the numerical noise. In addi-
tion, we have to carry out two cubic-spline interpolations:
one to determine the derivative of the bond-order parameter
as function of the perturbation field and one to fit its suscep-
tibility. For these reasons we neglect the points at the two
largest system sizes. We see that the second scaling relation
�=2��−�� is fulfilled to within our estimated error.38 Other
quantities, such as the electric polarization and the electric
susceptibility, scale with the same exponents as the bond-
order parameter and the bond-order susceptibility,
respectively.26

In addition, we have calculated the value of the central
charge governing the underlying conformal field theory
�CFT� numerically in two different ways. In the first method,
we use that the scaling of the low-lying energy levels with
system size is uniquely determined by the conformal tower.47

This scaling can be used to determine the central charge.48

The value obtained, c=0.50�4�, is consistent with that ex-
pected for the 2D-Ising model. In the second method, we
determine the central charge from the entropy profile, which
has a known form dependent only on the central charge.49

We obtain the same value �c�0.5� to within the numerical
accuracy at �c1

.

V. SDI TO MI TRANSITION

In this section, we present numerical results on the second
transition where the system passes from the spontaneously-
dimerized-phase-to-the-Mott-insulator phase with increasing
�. We will show both how the spin gap closes when ap-
proaching the critical point �c2

from below and how the bond
susceptibility diverges when approaching �c2

from above.
Our results confirm the KT scenario with an essential singu-
larity at �c2

and a critical phase for ���c2
. In order to do

this, a more careful treatment than at the 2D-Ising transition
point is required.

A. Correlation length and mass gap

For a KT transition, the correlation length diverges expo-
nentially as the transition point is approached from the
gapped phase and remains infinite in the critical region that
follows.50 Since the mass gap is related to the inverse of the
correlation length, the mass gap has to close exponentially as
the transition is approached and is zero in the critical region.
However, for finite-size systems, the correlation length � is
limited by the system size L. Very large system sizes or the
inclusion of higher-order corrections are required to reveal
the exponential divergence, which is restricted to a narrow
region close to the KT transition.

In order to locate the position of the second transition
point �c2

, we analyze the scaling of the mass gap, depicted in
Fig. 8�a�. The finite-size scaling analysis made for the first
transition cannot be used here because sufficiently large sys-
tems to study the logarithmic scaling cannot be reached. In-

stead, we prefer to use a different approach based on CFT.
Within the Mott-insulator phase, where the spin sector is
gapless, the system is critical and can be described by a CFT.
Furthermore, the characteristic excitation gaps scale with
system size L as

Ei�L� − E0�L� =
2�xiv

L
, �26�

where xi is the corresponding scaling index and v is the
excitation velocity. Since this expression is valid only in the
critical region corresponding to the Mott insulator, the extent
to which it is fulfilled can be used to locate the transition
point. In a plot of the mass gap times the system size L �Fig.
8�b��, all curves merge into a single one at a critical point �c2

,
as expected from Eq. �26�. Therefore, the system is in a
critical regime above a critical coupling,

�c2
= 1.8�1� . �27�

The point at which the curves merge is clearly separated �see
Eq. �11�� from the first critical point that we found at �c1

.
An analysis of the mass-gap ratio �see Eq. �10�� is also

useful. In contrast to what happens at the first transition, �c1
,

the curves do not cross the line corresponding to a ratio of
unity due to the logarithmic corrections.42 Nevertheless, the
curves remain very close to zero everywhere in the critical
region above �c2

, as can be seen in Fig. 9�a�. In the region
preceding �c2

, the value of the mass-gap ratio increases with
the system size, as expected for a gapped system. The overall
behavior of the mass-gap ratio curves further confirms that
there is a second transition point at �c2

and supports the KT
scenario.

In addition, we define and calculate the scaled difference
of mass gaps, Q,

Q��;L�,L� =
L�

2�

F��,L�� · L� − F��,L� · L

L� − L
. �28�

For an arbitrary L�, the first-order finite-size scaling terms
cancel out and Q�� ;L� ,L� vanishes in the critical region. In

(a) (b)

FIG. 8. �Color online� �a� Mass gap and �b� mass gap times L
relative to the second critical point as function of the coupling � and
for different system sizes.
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Fig. 9�b� we show results for L�=500. We conclude that the
second critical point occurs at �c2

�1.8 and the gap closes
exponentially. Since the distance between the two critical
points is much bigger, �c2

−�c1
�0.5, than any deviation due

to the logarithmic corrections, we conclude that there are two
phase transitions.

We have also calculated the approximate �-function �cs,
Eq. �12�. However, for this kind of transition, it has no zeros
�as expected�.42 Nevertheless, we can extrapolate the value
of the minima of the � function as a function of the system
size to the thermodynamic limit. This yields an alternate es-
timate of �c2

, �c2

� =1.9�1�.

B. Bond-order and electric susceptibilities

In order to classify the transition as a KT transition, we
examine the bond-order and electric susceptibilities �see Fig.
10�. The behavior of the peak of the bond-order susceptibil-
ity can be used to estimate the exponent of the susceptibility,

�peak
� �L� =

ln ��peak
� ,L + 2� − ln ��peak

� ,L�
ln�L + 2� − ln L

. �29�

The position of the peak in the bond-order susceptibility con-
verges to the value �peak�1.62, and the series of pseudoex-
ponents, �peak

� �L�, converges to ��1.27 in the thermody-
namic limit. For comparison, we calculate the electric
susceptibility, shown in Fig. 10�b�. The finite-size effects are
much stronger for the electric susceptibility than for the
bond-order susceptibility. In fact, we also observe a narrow
peak in e that grows and moves with the system size. In
general, we conclude that the coincidence of the mass gap
closing to zero exponentially and a diverging susceptibility
correspond to the typical scenario of an infinite-order phase
transition. The critical exponent of the susceptibility � can-

not be determined accurately because of strong finite-size
effects due to the strong influence of the bond-order wave
which scales to zero very slowly, i.e., as 1 /�L.26

Additionally, we have made a preliminary calculation of
the central charge from the entropy profile assuming that it
has the form predicted by CFT.49 In order to determine the
transition point, we minimize the 2 of the fit to the confor-
mal form and confirm that c�1 �c=1 is expected for this
type of KT transition� at this point. We obtain a rough esti-
mate of �c2

, �c2

c �1.65�15�, which is consistent with the re-
sults of our finite-size scaling analysis, �c2

=1.8�1� to within
the accuracy of the scaling. Thus, the three estimates of the
critical coupling, �c2

, �c2

� , and �c2

c are consistent with one
another. Our best estimate is given by �c2

since the other two
estimates are rougher and more likely to contain systematic
errors.

VI. DISCUSSION

We have analyzed the band-insulator-to-Mott-insulator
transition in the strong-coupling limit. Using simple strong-
coupling arguments, we have derived an effective model
starting from the ionic Hubbard model. The effective model,
which we have formulated in a spin-one representation, cap-
tures the physics of the transition and is less computationally
demanding than the ionic Hubbard model. It contains spin-
exchange processes which are strongly restricted compared
to those of a conventional spin model. In addition, the effec-
tive model demonstrates that a single interaction parameter
governs the transition. Our density-matrix renormalization-
group study of this model confirms that there are two transi-
tions at two clearly separated coupling strengths. The system
undergoes a transition from a band insulator to a spontane-
ously dimerized insulator followed by a transition from the
spontaneously dimerized phase to a Mott insulator with in-
creasing effective interaction. This behavior corresponds to
the behavior of the ionic Hubbard model found in previous
work.

In Fig. 11, we explicitly compare the phase boundaries
obtained in our work to phase boundaries obtained numeri-

(a)

(b)

FIG. 9. �Color online� �a� Logarithmic mass-gap ratio plus unity.
�b� Scaled difference of mass gaps Q for L�=500 and various
values of L.

(a) (b)

FIG. 10. �Color online� �a� Bond-order susceptibility and �b�
electrical susceptibility for the SDI-MI transition.
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cally for the ionic Hubbard model in Refs. 9 and 10. The
phase diagram is plotted in the 45° rotated U-� plane of the
ionic Hubbard model so that the abscissa corresponds to our
effective parameter �=U−� and the intermediate phase is
expanded relative to the depiction in Fig. 1. Since our effec-
tive model is based on a strong-coupling expansion in U and
�, our results should be applicable to the ionic Hubbard
model in the large U+� limit. As can be seen, for the BI-SDI
boundary, both ionic Hubbard model results tend toward our
strong-coupling value as U+� becomes larger although the
largest coupling point �at �=20� from Ref. 10 is still outside
our error bars. The results for the SDI-MI transition bound-
ary have larger discrepancies, but our results lie between
strong U+� extrapolations of the phase boundaries of Ref.
10 and that of Ref. 9. This underlines the difficulty of ob-
taining the transition point in this infinite-order Kosterlitz-
Thouless transition. To within large but realistic error bars,
the three sets of results for this phase boundary are not nec-
essarily inconsistent with each other.

Our extraction of the critical exponents for the first tran-
sition confirms that it belongs to the two-dimensional-Ising
universality class. We have also shown that the universal
scaling relations are fulfilled to within our numerical accu-
racy. At the second transition, we have observed that the
mass gap closes exponentially and that all relevant suscepti-
bilities diverge. An analysis of the scaling of the mass gap
and of the bond-order susceptibility confirms typical
Kosterlitz-Thouless behavior. The mass gap closes at the
critical point and then remains zero as the interaction is fur-
ther increased. The susceptibility diverges in the entire criti-
cal region above the second transition point. The overall sce-
nario, with an Ising-type transition from the band insulator to
the spontaneously dimerized insulator followed by an
infinite-order transition from the dimerized insulator the
Mott insulator, is in complete agreement with the field-
theoretical prediction for the ionic Hubbard model.14

The evolution of the appropriately mapped gaps with in-
creasing � in the effective model is consistent with the pic-

ture obtained for the ionic Hubbard model in Ref. 10. Deep
in the band-insulating phase, all gaps in the spin and charge
sectors are equal and are set by the band gap. As �c1

is
approached, the exciton gap, defined as the energy gap be-
tween the ground state and the first singlet excited state, is
the mass gap, and it goes to zero at �c1

, while the spin gap
�the gap to spin triplet excitations� remains finite. For �c1
����c2

the mass gap is set by the gap to the lowest-lying
triplet, i.e., the spin gap. This gap goes to zero at �c2

. For
���c2

, the spin and exciton gaps remain zero, as expected in
a critical phase, but the gaps to add or remove one or more
particles remain finite.

We note also that the mapping of electronic systems to
spin-one systems derived here can be adapted to a larger
class of similar models or to generalizations of the ionic
Hubbard model, e.g., to chains with an ionic potential with a
different periodicity or even to two-dimensional systems.
Another potentially interesting application would be to relate
exactly solvable spin-one models to electronic models and
vice versa via the spin-one composite representation.51
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APPENDIX: DERIVATION OF THE EFFECTIVE MODEL

The effective Hamiltonian can most easily be derived by
first expressing the original Hamiltonian as a function of the

Hubbard operators X̂i
��= ��i��i�, where the ��i and ��i des-

ignate an element of the Hubbard basis ��0 , �↑  , �↓  , �d� on
site i. Explicitly, they can be expressed as

X̂ = �
�1̂ − n̂↓��1̂ − n̂↑� ĉ↑�1̂ − n̂↓� ĉ↓�1̂ − n̂↑� ĉ↓ĉ↑

ĉ↑
†�1̂ − n̂↓� �1̂ − n̂↓�n̂↑ ĉ↑

†ĉ↓ − ĉ↓n̂↑

ĉ↓
†�1̂ − n̂↑� ĉ↓

†ĉ↑ n̂↓�1̂ − n̂↑� n̂↓ĉ↑

ĉ↑
†ĉ↓

† − ĉ↓
†n̂↑ n̂↓ĉ↑

† n̂↓n̂↑

� .

For instance, we rewrite the ionic potential and the Coulomb
interaction as

ĤU = U�
i=1

L

X̂i
dd = U�

j=1

L/2

�X̂2j−1
dd + X̂2j

dd�

and

Ĥ� =
�

2 �
i=1

L

�− 1�i�X̂i
↑↑ + X̂i

↓↓ + 2X̂i
dd�

=
�

2 �
j=1

L/2

�− X̂2j−1
↑↑ − X̂2j−1

↓↓ − 2X̂2j−1
dd + X̂2j

↑↑ + X̂2j
↓↓ + 2X̂2j

dd� .

They can then be mapped onto the spin-one model expressed

FIG. 11. �Color online� Rotated ground-state phase diagram
phase diagram of the ionic Hubbard model depicting the phase
boundary obtained in Refs. 9 and 10, as well as the transition points
�c1

=1.286�5� and �c2
=1.8�1� obtained in this work, which apply in

strong coupling in U / t, � / t. The estimated error in our results are
indicated by the gray-shaded bars at the upper and lower axes.
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in terms of the operators Li
ss�= �si�si��, with �si as the spin-

one Sz basis ��1 , �0 , �−1� on site i. The single-site Hilbert
space truncation is defined as

� X̂i
�� → 0 for � or � = 0 and i = 2j − 1

X̂i
�� → 0 for � or � = d and i = 2j

X̂i
�� = L̂�� otherwise.

� �A1�

In the spin-one basis,

L̂ = �
�Ŝi

z�2 + Ŝi
z

2

Ŝi
zŜi

+

�2

�Ŝi
+�2

2

Ŝi
−Ŝi

z

�2
1̂i − �Ŝi

z�2 −
Ŝi

+Ŝi
z

�2

�Ŝi
−�2

2
−

Ŝi
zŜi

−

�2

�Ŝi
z�2 − Ŝi

z

2

� . �A2�

Hence, the interaction and the potential parts are transformed
to

ĤU = U�
j=1

L/2

L̂2j−1
00 , �A3�

Ĥ� = −
�

2 �
j=1

L/2

�L̂2j−1
11 + L̂2j−1

−1−1 + 2L̂2j−1
00 − L̂2j

11 − L̂2j
−1−1� .

�A4�

Altogether, defining the coupling constant �=U−�, the dop-
ing �=N−L, and writing the terms using spin-one operators
�see Eq. �A2��, the two-term contribution becomes

Ĥ�
e = −

�

2�
i=1

L

�Ŝi
z�2 −

�

2
L −

U

2
� . �A5�

Likewise, the hopping part is translated to

Ĥt
e = t�

i=1

L

�L̂i
0−1L̂i+1

01 − L̂i
01L̂i+1

0−1 + L̂i
−10L̂i+1

10 − L̂i
10L̂i+1

−10�

�A6�

or in the spin-one language

Ĥt
e =

t

2�
i=1

L

�− Ŝi
+Ŝi

zŜi+1
− Ŝi+1

z + Ŝi
−Ŝi

zŜi+1
+ Ŝi+1

z + H.c.� , �A7�

which is equivalent to Eq. �5�. A sketch of the allowed pro-
cesses is shown in Fig. 12. These processes are a relative
small subset of those of the isotropic Heisenberg spin chain
model. Note that the AFM exchange in the IHM maps to a
sequence consisting of two scattering processes in the effec-
tive model.
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